74ACT16646 16-Bit Transceiver/Register with 3-STATE Outputs

General Description

Features

- Independent registers for A and B buses
- Multiplexed real-time and stored data transfers
- Separate control logic for each byte
- 16-bit version of the ACT646
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:

FAIRCH	ILD JCTOR TM			August 1999 Revised October 1999	74ACT16			
74ACT16 16-Bit Tra	646 ansceiver	/Register v	vith 3-STATE O	outputs	646 16-Bi			
General De The ACT16646 cor registered bus tran sion of data directly storage registers. which can be short DIR inputs determi device. The CPAB isters on the LOW-	scription tains sixteen non-in sceivers providing m / from the input bus Each byte has sepi- ed together for full 1 ne the direction of di- and CPBA inputs loa to-HIGH transition.	verting bidirectional ultiplexed transmis- or from the internal arate control inputs 6-bit operation. The ata flow through the ad data into the reg-	Features Independent registers for <i>J</i> Multiplexed real-time and a Separate control logic for 16-bit version of the ACT6 Outputs source/sink 24 m/ TTL-compatible inputs	A and B buses stored data transfers each byte 646 A	t Transceiver/Register			
Order Number	Package Number		Package Descriptio	on	₹			
74ACT16646SSC	MS56A	56-Lead Shrink Smal	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide					
74ACT16646MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide						
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Logic Symbol Connection Diagram								
- o G ₁	A ₀ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇ A ₈ A ₉ A ₁₀ A ₁₁							

Logic Symbol	Connection Dia	agram	
Logic Symbol	Connection Dia CPA8,	agram 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40	$-\overline{G}_{1}$ $-CPBA_{1}$ $-SBA_{1}$ $-GND$ $-B_{0}$ $-B_{1}$ $-V_{CC}$ $-B_{2}$ $-B_{3}$ $-GND$ $-B_{5}$ $-B_{5$
	Α ₀ Α ₁₀ GND = Α ₁₁ = Α ₁₂ = Υ _{CC} = Α ₁₄ = Υ _{CC} = Δ ₁₄ = CND	16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29	
FACT [™] is a trademark of Fairchild Semiconductor Corporation.			

www.fairchildsemi.com

Function Table Inputs Data I/O (Note 1) **Output Operation Mode** CPAB₁ CPBA₁ DIR₁ SAB₁ SBA₁ B₀₋₇ G₁ A₀₋₇ H or L Isolation Н Х H or L Х Х н Х Clock An Data into A Register Х Х Х Input Input Х Clock Bn Data Into B Register Н Х Х Х Н A_n to B_n —Real Time (Transparent Mode) L Х Х L Х Clock An Data to A Register L Н Х L Х Input Output ~ L н H or L Х н Х A Register to B_n (Stored Mode) Clock An Data into A Register and Output to Bn н н L Х Х Х Х B_n to A_n—Real Time (Transparent Mode) L Х L L Clock Bn Data into B Register Х L L Х L Output Input ~ Х B Register to An (Stored Mode) L L Н Х H or L L Х Clock B_n into B Register and Output to A_n L Х н H = HIGH Voltage Level X = Immaterial L = LOW Voltage Level Note 1: The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control pins. **Real Time Transfer** Storage from

Logic Diagram

2

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to $V_{CC}^{} + 0.5V$
DC Output Source/Sink Current (I _O)	±50 mA
DC V_{CC} or Ground Current	
per Output Pin	±50 mA
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (VI)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate (ΔV/Δt)	125 mV/ns
V _{IN} from 0.8V to 2.0V	

74ACT16646

V_{CC} @ 4.5V, 5.5V

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

0	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to}+85^{\circ}C$			
Symbol		(V)	Тур Gi		uaranteed Limits	Units	Conditions
VIH	Minimum HIGH	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	V	L 50A
	Output Voltage	5.5	5.49	5.4	5.4	v	ι _{OUT} = -50 μΑ
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 3
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	L 50 ··· A
	Output Voltage	5.5	0.001	0.1	0.1	v	i _{OUT} = 50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)
I _{OZT}	Maximum I/O			10.5	15.0		$V_{IN} = V_{IL}, V_{IH}$
	Leakage Current	5.5		±0.5	±5.0	μΑ	$V_0 = V_{CC}, GND$
I _{IN}	Maximum Input	F F		+0.1	+1.0		
	Leakage Current	5.5		±0.1	±1.0	μΑ	$v_1 = v_{CC}, GND$
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
I _{CC}	Max Quiescent	F F		0.0	80.0		
	Supply Current	5.5		0.0	00.0	μΑ	VIN = VCC OF GIVD
I _{OLD}	Minimum Dynamic				75	mA	V _{OLD} = 1.65V Max
IOHD	Output Current (Note 4)	5.5			-75	mA	V _{ОНD} = 3.85V Min

DC Electrical Characteristics

Note 4: Maximum test duration 2.0 ms; one output loaded at a time.

www.fairchildsemi.com

ധ
4
ဖ
Q
~
F
C
◄
4
~

AC Electrical Characteristics

	Parameter	v _{cc}	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
Symbol		(V)						
		(Note 5)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	5.0	4.6	6.9	9.4	3.6	10.1	ns
t _{PLH}	Clock to Bus	5.0	4.3	6.5	8.9	3.3	9.7	
t _{PHL}	Propagation Delay	5.0	4.0	6.2	8.5	2.9	9.2	ns
t _{PLH}	Bus to Bus	5.0	4.1	6.4	8.6	3.2	9.3	
t _{PHL}	Propagation Delay	5.0	4.0	6.4	8.9	3.1	9.6	ns
t _{PLH}	Select to Bus		4.2	6.7	9.5	3.2	10.4	
	(w/An or Bn HIGH or LOW)							
t _{PZL}	Enable Time	5.0	5.3	7.8	10.5	3.8	11.4	20
t _{PZH}	G to An/Bn	5.0	4.6	6.9	9.4	3.3	10.2	115
t _{PLZ}	Disable Time	5.0	3.0	5.5	8.1	2.3	8.6	20
t _{PHZ}	G to An/Bn	5.0	3.4	5.7	8.3	2.6	8.6	115
t _{PZL}	Enable Time	5.0	5.1	8.2	11.8	4.3	12.7	20
t _{PZH}	DIR to An/Bn	5.0	4.6	7.5	10.8	3.7	11.7	115
t _{PLZ}	Disable Time	5.0	2.9	5.8	9.2	2.0	9.8	
t _{PHZ}	DIR to An/Bn	5.0	3.4	6.1	9.2	2.5	9.7	ns
Note 5: Volta	age Range 5.0 is 5.0V ± 0.5V.					•		

AC Operating Requirements

Symbol	Parameter	V _{CC} (V) (Note 6)	T _A = +25°C C _L = 50 pF Guarantee	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$ d Minimum	Units
t _S	Setup Time, H or L Bus to Clock	5.0	3.0	3.0	ns
t _H	Hold Time, H or L Bus to Clock	5.0	1.5	1.5	ns
t _W	Clock Pulse Width H or L	5.0	4.0	4.0	ns

Note 6: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	95	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com